
       Fiche Méthode : Graphes & Algorithmique (NSI) 
 
1. Vocabulaire et Définitions Fondamentales 

• Graphe (G) : Un ensemble de sommets (V) reliés par des arêtes (E). 
• Graphe Orienté : Les arêtes ont un sens (on parle d'arcs). 
• Adjacence : Deux sommets sont dits adjacents s'ils sont reliés par une 

arête. 
• Degré : Nombre d'arêtes incidentes à un sommet (le nombre de ses 

voisins). 
• Graphe Connexe : S'il existe toujours un chemin entre n'importe quelle 

paire de sommets. 
• Cycle : Une suite d'arêtes revenant au sommet de départ sans repasser 

deux fois par la même arête. 
• Graphe Acyclique : Un graphe qui ne contient aucun cycle (ex: un arbre 

ou un DAG). 

 
2. Représentations en Python 
Il existe deux manières principales de stocker un graphe en mémoire : 
A. Matrice d'adjacence (Liste de listes) 
Un tableau 2D de taille n×n. M[i][j] = 1 (ou True) si une arête existe, 0 (ou False) 
sinon. 

• Avantage : Accès instantané pour savoir si i et j sont reliés. 
• Inconvénient : Très gourmand en mémoire si le graphe a peu d'arêtes. 

B. Dictionnaire d'adjacence 
Une structure où chaque clé est un sommet et chaque valeur est la liste de ses 
voisins. 

• Avantage : Plus efficace pour parcourir les voisins d'un sommet. 
• Exemple : G = {"A": ["B", "C"], "B": ["A", "D"], ...} 

 
3. Méthode de Coloration (Algorithme de Welsh-Powell) 
Objectif : Colorer les sommets de sorte que deux sommets adjacents n'aient pas 
la même couleur, en utilisant le minimum de couleurs (nombre chromatique χ(G)). 
Algorithme : 

1. Classer les sommets par ordre décroissant de degré. 
2. Prendre la première couleur et l'attribuer au premier sommet de la liste. 
3. Parcourir la liste et attribuer cette même couleur à chaque sommet qui 

n'est adjacent à aucun sommet déjà coloré avec cette couleur. 

4. Recommencer avec une nouvelle couleur pour les sommets restants 
jusqu'à épuisement. 
 
Pour vous entrainer : https://gemini.google.com/share/1852033955a6  

 
       Astuces pour le Contrôle 

• Matrice d'adjacence : Vérifiez toujours si le graphe est orienté ou non. S'il 
n'est pas orienté, la matrice doit être symétrique par rapport à la 
diagonale. 

• Coloration : Si vous trouvez un triangle (3 sommets reliés entre eux), vous 
aurez besoin d'au moins 3 couleurs. 

• Piles/Files : En Python, pour simuler une Pile, on utilise L.append() et 
L.pop(). Pour une File, on utilise L.append() et L.pop(0). 

 
Bonus (à consulter après avoir fait le devoir blanc) 

 
4. Stratégies de Parcours (Initiation) 
Même sans avoir fait le cours formel, on peut explorer un graphe via deux 
structures de données : 

Structure 
Type de 
Parcours 

Logique Résultat visuel 

File 
(FIFO) 

Largeur (BFS) 
On traite les voisins dans 
l'ordre d'arrivée. 

On explore "en couches" 
(tous les voisins à distance 
1, puis distance 2...). 

Pile 
(LIFO) 

Profondeur 
(DFS) 

On traite le dernier voisin 
découvert immédiatement. 

On explore "un tunnel" 
jusqu'au bout avant de 
revenir en arrière. 

 

 
5. Lien avec la Programmation Dynamique 
Lorsqu'on cherche à compter des chemins ou trouver un coût optimal dans un 
Graphe Orienté Acyclique (DAG) : 

• Le problème : Un sommet peut être atteint par plusieurs chemins. Un 
calcul récursif "naïf" recalculerait plusieurs fois la même chose. 

• La solution : On stocke le résultat du calcul pour chaque sommet dans un 
dictionnaire memo. 

• Principe : Valeur(Sommet) = Optimisation(Valeur(Voisins)).  

https://gemini.google.com/share/1852033955a6


Sujet 1 : Devoir d'entraînement (90 min) 

Objectif : Consolider les bases de représentation et l'usage des structures linéaires. 

Exercice 1 : Le Réseau de Transport (60 min - 14 points) 

Inspiré des sujets E3C et épreuves pratiques. 

On modélise un réseau de bus par un graphe dont les sommets sont des 

arrêts et les arêtes les lignes directes. On utilise la classe Graphe suivante utilisant 

un dictionnaire d'adjacence. 

class Graphe: 
    def __init__(self, sommets): 
        self.sommets = sommets 
        self.adj = {s: [] for s in sommets} 
 
    def ajouter_arete(self, u, v): 
        if v not in self.adj[u]: 
            self.adj[u].append(v) 
        if u not in self.adj[v]: 
            self.adj[v].append(u) 
 
    def voisins(self, u): 
        return self.adj[u] 
 

Partie A : Manipulation de base 

1. Écrire une méthode degre(self, u) qui renvoie le nombre de voisins de 

l'arrêt u. 

2. On considère les arrêts "A", "B", "C", "D". Écrire les instructions Python 

pour créer le graphe et ajouter les arêtes (A,B), (B,C) et (B,D). 

Partie B 
On souhaite vérifier si on peut aller d'un arrêt depart à un arrêt arrivee. On 

utilise pour cela une File. On suppose qu'une classe File est déjà définie avec les 
méthodes enfiler(x), defiler() et est_vide(). 

 
3. Compléter la fonction est_accessible(g, depart, arrivee) ci-dessous : 

 
def est_accessible(g, depart, arrivee): 
    f = File() 
    f.enfiler(depart) 
    visites = [depart] 
    while not f.est_vide(): 
        u = f.defiler() 
        if u == arrivee: 
            return True 
        for v in g.voisins(u): 
            if v not in visites: 
                visites.append(v) 
                f.enfiler(v) # <-- Ligne à compléter 
    return False 
 

4. Analyse du comportement :  
On considère un graphe où l'arrêt "A" est relié à "B" et "C". "B" est relié à 
"D". Si on lance est_accessible(g, "A", "D") : 

o a) Quels sont les sommets qui seront présents dans la File juste 
après avoir traité le sommet "A" ? 

o b) Lequel de ces sommets sera traité (défilé) en premier ? 
o c) Entre "B" et "D", lequel sera découvert en premier ? Est-ce que 

l'algorithme explore d'abord tous les voisins directs de "A" avant 
de s'éloigner vers "D" ? 

 
Partie C : Optimisation (Dynamique) On suppose maintenant que le graphe est 

orienté et sans cycle (chaque arête a un coût en minutes). On veut stocker le 

temps minimum pour atteindre chaque station depuis le dépôt.  

Expliquez pourquoi l'utilisation de la programmation dynamique est pertinente 

pour calculer un chemin dans un graphe sans cycle. 

 

 



Exercice 2 : Planification et Coloration (30 min - 6 points) 

Un centre d'examen doit organiser des épreuves pour 6 matières : 

Mathématiques (M), NSI (N), Physique (P), Chimie (C), SVT (S) et Philosophie (Ph). 

Deux matières ne peuvent pas avoir lieu en même temps si au moins un élève suit 

ces deux spécialités. Les incompatibilités sont les suivantes : 

• M est incompatible avec N, P et Ph. 

• N est incompatible avec M, P et C. 

• P est incompatible avec M, N, C et S. 

• C est incompatible avec N, P et S. 

• S est incompatible avec P et C. 

• Ph est incompatible avec M. 

1. Représenter cette situation par un graphe où les sommets sont les 

matières. 

2. Donner la matrice d'adjacence de ce graphe (en suivant l'ordre 

alphabétique : C, M, N, P, Ph, S). (à la place de True et False utiliser 1 et 0). 

3. On souhaite minimiser le nombre de créneaux horaires. En utilisant un 

algorithme de coloration glouton (en traitant les sommets par ordre de 

degré décroissant), déterminez le nombre chromatique (nombre minimal 

de couleurs pour colorier, sans que deux sommets connectés aient la 

même couleur) de ce graphe. 

4. Quel est le nombre minimal de créneaux nécessaires ? Donnez une 

répartition possible. 

 

  



Corrigé du Sujet 1 : Devoir d'entraînement 
 
Exercice 1 : Réseau de Transport 

1. Méthode degre : 
 
def degre(self, u): 
    return len(self.adj[u]) 
 

2. Instructions : 
 
g = Graphe(["A", "B", "C", "D"]) 
g.ajouter_arete("A", "B") 
g.ajouter_arete("B", "C") 
g.ajouter_arete("B", "D") 
 
3. La ligne à ajouter est f.enfiler(v). 
 
4. a) Après "A", la file contient ["B", "C"]. 
4. b) C'est "B" qui sort (premier entré, premier sorti). 
4. c) Oui. Comme on utilise une File (FIFO), tous les voisins directs de "A" sont 
enfilés et sortiront avant les voisins de ces voisins (comme "D"). On explore par 
"distance" croissante. 
 

5. Pourquoi la programmation dynamique est-elle pertinente ici ? 

Dans un graphe orienté acyclique (DAG), pour calculer le temps minimum (ou le 
nombre de chemins), on se rend compte qu'on repasse souvent par les mêmes 
sommets. 

• Problème du calcul récursif simple : Si une station S est accessible par 
plusieurs chemins, un algorithme récursif classique va recalculer le temps 
minimum depuis S à chaque fois qu'il la rencontre. Cela entraîne une 
explosion du temps de calcul (complexité exponentielle). 

• Solution Dynamique :  
En utilisant la mémoïstication (stockage des résultats dans un 
dictionnaire ou un tableau), on ne calcule le temps minimum depuis la 
station S qu'une seule fois. Les appels suivants se contentent de lire la 

valeur en mémoire. On passe ainsi d'une complexité exponentielle à une 
complexité linéaire O(S+A) où S est le nombre de sommets et A le nombre 
d'arêtes. 

Exercice 2 : Planification et Coloration 
1. Le Graphe : Le graphe possède 6 sommets. Les arêtes relient les matières 

incompatibles. 
2. Matrice d'adjacence (Ordre : C, M, N, P, Ph, S) : 

 
3. Coloration (Welsh-Powell) : 

o Calcul des degrés : P(4),C(3),M(3),N(3),S(2),Ph(1). 
o Couleur 1 : P, puis Ph (non adjacent à P). 
o Couleur 2 : C, puis M (non adjacent à C). 
o Couleur 3 : N, puis S (non adjacent à N). 

4. Conclusion : Le nombre chromatique est 3. Il faut 3 créneaux : {P, Ph}, {C, 
M} et {N, S}. 

 
 


