D Fiche Méthode : Graphes & Algorithmique (NSI)

1. Vocabulaire et Définitions Fondamentales

e Graphe (G) : Un ensemble de sommets (V) reliés par des arétes (E).

e Graphe Orienté : Les arétes ont un sens (on parle d'arcs).

e Adjacence : Deux sommets sont dits adjacents s'ils sont reliés par une
aréte.

e Degré : Nombre d'arétes incidentes a un sommet (le nombre de ses
voisins).

e Graphe Connexe : S'il existe toujours un chemin entre n'importe quelle
paire de sommets.

e Cycle : Une suite d'arétes revenant au sommet de départ sans repasser
deux fois par la méme aréte.

e Graphe Acyclique : Un graphe qui ne contient aucun cycle (ex: un arbre
ou un DAG).

2. Représentations en Python
Il existe deux maniéres principales de stocker un graphe en mémoire :
A. Matrice d'adjacence (Liste de listes)
Un tableau 2D de taille nxn. M[i][j] = 1 (ou True) si une aréte existe, O (ou False)
sinon.

e Avantage : Accés instantané pour savoir si i et j sont reliés.

¢ Inconvénient : Trés gourmand en mémoire si le graphe a peu d'arétes.
B. Dictionnaire d'adjacence
Une structure ou chaque clé est un sommet et chaque valeur est la liste de ses
Voisins.

e Avantage : Plus efficace pour parcourir les voisins d'un sommet.

e Exemple:G={"A":["B","C"],"B": ["A", "D"], ...}

3. Méthode de Coloration (Algorithme de Welsh-Powell)

Objectif : Colorer les sommets de sorte que deux sommets adjacents n'aient pas
la méme couleur, en utilisant le minimum de couleurs (nombre chromatique x(G)).

Algorithme :
1. Classer les sommets par ordre décroissant de degré.
2. Prendre la premiére couleur et I'attribuer au premier sommet de la liste.
3. Parcourir la liste et attribuer cette méme couleur a chague sommet qui
n'est adjacent a aucun sommet déja coloré avec cette couleur.

4. Recommencer avec une nouvelle couleur pour les sommets restants
jusqu'a épuisement.

Pour vous entrainer : https://gemini.google.com/share/1852033955a6

Q Astuces pour le Contrdle

e Matrice d'adjacence : Vérifiez toujours si le graphe est orienté ou non. S'il
n'est pas orienté, la matrice doit étre symétrique par rapport ala
diagonale.

e Coloration : Si vous trouvez un triangle (3 sommets reliés entre eux), vous
aurez besoin d'au moins 3 couleurs.

o Piles/Files : En Python, pour simuler une Pile, on utilise L.append() et
L.pop(). Pour une File, on utilise L.append() et L.pop(0).

Bonus (a consulter aprés avoir fait le devoir blanc)
4. Stratégies de Parcours (Initiation)

Méme sans avoir fait le cours formel, on peut explorer un graphe via deux
structures de données :

Type de . . .
Structure P Logique Résultat visuel
Parcours
. . - On explore "en couches"
File On traite les voisins dans S
Largeur (BFS)||, o, (tous les voisins a distance
(FIFO) I'ordre d'arrivée. .
1, puis distance 2...).
n lore "un tunnel"
Pile Profondeur ||On traite le dernier voisin 'Cl)Js etj('Zl:)beoul: a\t;nt Ze
(LIFO) (DFS) découvert immédiatement. jusq . .
revenir en arriére.

5. Lien avec la Programmation Dynamique
Lorsqu'on cherche a compter des chemins ou trouver un colt optimal dans un
Graphe Orienté Acyclique (DAG) :
e Le probléme : Un sommet peut étre atteint par plusieurs chemins. Un
calcul récursif "naif" recalculerait plusieurs fois la méme chose.
e Lasolution : On stocke le résultat du calcul pour chaque sommet dans un
dictionnaire memo.
e Principe : Valeur(Sommet) = Optimisation(Valeur(Voisins)).


https://gemini.google.com/share/1852033955a6

Sujet 1 : Devoir d'entrainement (90 min)

Objectif : Consolider les bases de représentation et I'usage des structures linéaires.

Exercice 1 : Le Réseau de Transport (60 min - 14 points)
Inspiré des sujets E3C et épreuves pratiques.

On modélise un réseau de bus par un graphe dont les sommets sont des
arréts et les arétes les lignes directes. On utilise la classe Graphe suivante utilisant
un dictionnaire d'adjacence.

class Graphe:
def __init__ (self, sommets):
self.sommets = sommets
self.adj = {s: [] for s in sommets}

def ajouter_arete(self, u, v):
if v not in self.adj[ul:
self.adj[u].append(v)
if u not in self.adj[v]:
self.adj[v].append(u)

def voisins(self, u):
return self.adj[u]

Partie A : Manipulation de base

1. Ecrire une méthode degre(self, u) qui renvoie le nombre de voisins de
I'arrét u.

2. On consideére les arréts "A", "B", "C", "D". Ecrire les instructions Python
pour créer le graphe et ajouter les arétes (A,B), (B,C) et (B,D).

Partie B

On souhaite vérifier si on peut aller d'un arrét depart a un arrét arrivee. On
utilise pour cela une File. On suppose qu'une classe File est déja définie avec les
méthodes enfiler(x), defiler() et est_vide().

3. Compléter la fonction est_accessible(g, depart, arrivee) ci-dessous :

def est_accessible(g, depart, arrivee):
f = File()
f.enfiler(depart)
visites = [depart]
while not f.est_vide():
u = f.defiler()
if u==arrivee:
return True
for v in g.voisins(u):
if v not in visites:
visites.append(v)
f.enfiler(v) # <-- Ligne a compléter
return False

4. Analyse du comportement :
On considere un graphe ou l'arrét "A" est relié a "B" et "C". "B" est relié a
"D". Si on lance est_accessible(g, "A", "D") :
o a)Quels sont les sommets qui seront présents dans la File juste

apres avoir traité le sommet "A" ?
b) Lequel de ces sommets sera traité (défilé) en premier ?
c) Entre "B" et "D", lequel sera découvert en premier ? Est-ce que
I'algorithme explore d'abord tous les voisins directs de "A" avant
de s'éloigner vers "D" ?

Partie C : Optimisation (Dynamique) On suppose maintenant que le graphe est
orienté et sans cycle (chaque aréte a un colt en minutes). On veut stocker le
temps minimum pour atteindre chaque station depuis le dép6ot.

Expliquez pourquoi l'utilisation de la programmation dynamique est pertinente
pour calculer un chemin dans un graphe sans cycle.



Exercice 2 : Planification et Coloration (30 min - 6 points)

Un centre d'examen doit organiser des épreuves pour 6 matiéres :
Mathématiques (M), NSI (N), Physique (P), Chimie (C), SVT (S) et Philosophie (Ph).
Deux matiéres ne peuvent pas avoir lieu en méme temps si au moins un éléve suit
ces deux spécialités. Les incompatibilités sont les suivantes :

e M estincompatible avec N, P et Ph.
e N estincompatible avec M, P et C.

e P estincompatible avec M, N, C et S.
e Cestincompatible avec N, P et S.

e Sestincompatible avec P et C.

e Ph est incompatible avec M.

1. Représenter cette situation par un graphe ol les sommets sont les
matieres.

2. Donner la matrice d'adjacence de ce graphe (en suivant I'ordre
alphabétique : C, M, N, P, Ph, S). (a la place de True et False utiliser 1 et 0).

3. On souhaite minimiser le nombre de créneaux horaires. En utilisant un
algorithme de coloration glouton (en traitant les sommets par ordre de
degré décroissant), déterminez le nombre chromatique (nombre minimal
de couleurs pour colorier, sans que deux sommets connectés aient la
méme couleur) de ce graphe.

4. Quel est le nombre minimal de créneaux nécessaires ? Donnez une
répartition possible.



Corrigé du Sujet 1 : Devoir d'entrainement

Exercice 1 : Réseau de Transport
1. Méthode degre :

def degre(self, u):
return len(self.adj[u])

2. Instructions:

g = Graphe(["A", "B", "C", "D"])
g.ajouter_arete("A", "B")
g.ajouter_arete("B", "C")
g.ajouter_arete("B", "D")

3. La ligne a ajouter est f.enfiler(v).

4. a) Apres "A", la file contient ["B", "C"].

4. b) C'est "B" qui sort (premier entré, premier sorti).

4. c) Oui. Comme on utilise une File (FIFO), tous les voisins directs de "A" sont
enfilés et sortiront avant les voisins de ces voisins (comme "D"). On explore par
"distance" croissante.

5. Pourquoi la programmation dynamique est-elle pertinente ici ?

Dans un graphe orienté acyclique (DAG), pour calculer le temps minimum (ou le
nombre de chemins), on se rend compte qu'on repasse souvent par les mémes
sommets.

e Probléme du calcul récursif simple : Si une station S est accessible par
plusieurs chemins, un algorithme récursif classique va recalculer le temps
minimum depuis S a chaque fois qu'il la rencontre. Cela entraine une
explosion du temps de calcul (complexité exponentielle).

e Solution Dynamique :

En utilisant la mémoistication (stockage des résultats dans un
dictionnaire ou un tableau), on ne calcule le temps minimum depuis la
station S qu'une seule fois. Les appels suivants se contentent de lire la

valeur en mémoire. On passe ainsi d'une complexité exponentielle a une
complexité linéaire O(S+A) ou S est le nombre de sommets et A le nombre
d'arétes.

Exercice 2 : Planification et Coloration
1. Le Graphe: Le graphe posséde 6 sommets. Les arétes relient les matiéres
incompatibles.
2. Matrice d'adjacence (Ordre: C, M, N, P, Ph, S) :

/00 1 1 0 1)
001110
110100
111001
010000
\1 0 0 1.0 0)

3. Coloration (Welsh-Powell) :
o Calcul des degrés : P(4),C(3),M(3),N(3),5(2),Ph(1).
o Couleur1: P, puis Ph (non adjacent a P).
o Couleur 2 :C, puis M (non adjacent a C).
o Couleur 3 : N, puis S (non adjacent a N).
4. Conclusion : Le nombre chromatique est 3. Il faut 3 créneaux : {P, Ph}, {C,
M} et {N, S}.



